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It is shown that a one-way 3D parallel/sequential acceptor
cannot accept the class of 3D binary arrays in which the set
of 1's is connected, unlike the situation in the 2D case; but

it can do so if multiple passes are allowed.
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0. Introduction

-~

In recent years, there have arisen many requirements for
three-dimensional (3D) data processing with advances in com-
puter tomography (CT). Some topological properties of 3D

digital pictures have been discussed in a series of papers

by Rosenfeld and Morgenthaler [l]-[S]: as well as others. A

3D picture can be represented by a 3D array of volume elements
(voxels for short). In a binary-valued 3D picture (each voxel
is 0 or 1), it is easy to define connectedness, and objects and
cavities are then defined as the equivalence classes of the
connectedness relation. These correspond to two~dimensional
(2D) objects and holes, respectively. Moreover, in the 3D
case, there also exist 3D holes whose properties are gquite dif-
ferent from those of 2D holes.

In this paper, we consider the problem of recognition of

the above-mentioned properties of 3D pictures. First, we pro-
pose algorithms which for every (binary) 3D digital picture
compute the numbers of objects, cavities and holes. These
algorithms are performed in one pass; they are 3D versions

of the algorithm for 2D digital pictures which was given

by Efelkow [6].' Since we usually receive a series of 2D pic-
tures as the os$put of a CT scanner, it is of interest that
these algorithms scan such output plane by plane, from the top
to the bottom, and stop when all of them have been scanned.
However, the algorithms violate the condition of finiteness

of the symbols used. From the point of view of the theory of

languages and their acceptance, this condition of finiteness
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is a fundamental one. In the second part of this paper, we
discuss this problem and show that any one-way 3D parallel/
sequential acceptor cannot accept the set of 3D pictures
such that the set of 1's is connected. This is interesting
because it is known that a one-way 2D parallel/sequential
acceptor can do this acceptance for the 2D case (e.g., see
Theorem 7.4.6 in [7]). 1In the third part of this paper,
we extend the concept of a 3D parallel/sequential acceptor
to allow multiple passes. This concept of multi-pass is the
same as that introduced in {8]. Then, making use of a shrink-
ing technique used in [9] we show that a multi-pass one-way
3D parallel/sequential acceptor can accept 3D connectedness.
We assume that the readers are familiar with the basic

concepts of picture languages.
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1. Preliminaries

Let Z be a 3D array of lattice points, which we assume to be
¢xmxn, i.e., 2 = {(i,3j,k)| 1=i=¢, 1=j=m, 1=<ksn}. A 3D digital
picture f is a mapping from z to {0,1}, i.e., £:2-{0,1}. Each
point (i,j,k) is called a voxel. Here, we assume that any 3D
digital picture is surrounded by the special symbol # (called the
blank symbol). That is, let B be the set {(i,j,k)|(i=0 & 0=<j<m+l
& 0<k<sn+l) v (i=2+1 & 0<j=m+l & O0<k<n+l) v (0=<i=2+1 & j=0 & 0<k=<n+l)v
(0=i<f¢+1 & j=m+l & O0=<k=n+l) v (0<i<fL+1 & 0=j<m+l & k=0) v (0=<i=<Z+1 &
0<j=<m+l & k=n+l)}. Then every latice point of B is occupied by
the symbol #. The set B is called the border of I. Usually,
the subset of 1's of 3, i.e., the set {(i,j,k)|f(i,j,k)=1}, is
called S, and its complement is called S. For every pair of points
X=(xl,x2,x3) and Y=(y1,y2,y3), X and Y are 6-adjacent if |xl—y1[+

lxz—y2|+|x3-y3|=l; ¥ and Y are 26-adjacent if max(lxl-yl[4x2-y2|,

|x3-y3|)=l. If poirnts P and Q are 6-adjacent (26-adjacent), then

P is called a 6-neighbor (26-neighbor) of Q. To avoid ambiguous

situations we assume that opposite types of adjacency are used

for S and S. A 6-path (26-path) n is a sequence of points, n=

PorPyre--rPyr where, for all i such that l=izm, p; is a 6-neighbor
(26-neighbor) of Pi.1- Any two points P,Q of S are called

connected in S if there exists a path P=p0,...,pm=Q from P to Q,

where pies. Evidently, "connected" is an equivalence relation.
This relation partitions S into equivalence classes. These clas-

ses are called the connected components of S. 1In the same way,
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we may define connectedness in § and the connected components '

of §. A connected component of S is called an object of S.
Clearly, exactly one component of S contains the #'s. This com-
ponent is called the background of S; all other components of

S are called cavities of S.

Even in ordinary topology it is'difficult to characterize
holes. A hole may be thought of as a property of a boundary
surface which makes it topologically equivalent to a torus.

In another approach, an object is defined to have no hole if

every simple closed curve in the object is continuously deform-
able within the object to a single point. We see from these
remarks that the concept of a hole is different from those of
objects and cavities; we cannot point to or label the points which
constitute a hole. 1Indeed, the points of the objects and cavi-
ties cover the space, but a hole is a property of those collec-
tions of points. Thus, when considering an object (and its cavi-
ties) we shall here try only to understand what is meant by the
number of holes in the object, and not what is meant by a hole.

The genus G(S) of a set S in a 3D digital picture is defined
as the number of objects in S (0(S)) plus the number of cavities
in S (c(S)) minus the number of holes in S (H(S)). As already
mentioned the definition of holes is not simple, and in parti-
cular holes cannot be labelled to facilitate counting them.

But since this can be done with objects and cavities, the defi-
nition of the genus defines the number of holes in S, and con-

versely.
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In [4], Morgenthaler has given a method of computing

G(S) directly from the local patterns in S:

1) When 26-adjacency is used for S,
G26(S)=¢l-¢2+¢3-¢4+¢5-¢6+¢7-¢8r
where
¢,=#(2),
) b,=#(3)+#(4)+4 (5),
¢=#(6)+#(7)+#(8),
¢4=#(9)+#(10)+#(ll)+#(12)+#(13)+#(l4),
¢o=#(15)+#(16)+4(17),
$=H#(18)+#(19)+#(20),
¢,=#(21),
bg=#(22),
and by #(n) we mean the number of times the configuration
n of Fig. 1 occurs in the picture S (in all orientations).
2) When 6-adjacency is used for S,
Gg(SI=v =hotvy=vyy
where
v =#(2),
P b= (3),
Yy=#(9),
v,=#(22),

(] The 22 patterns used in these definitions are drawn in Figure 1.

Morgenthaler has also shown that G26(§)-G6(S)=l and G6(§)—G26(S)=1.
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2. The number of objects, cavities and holes

In this section, we consider algorithms that compute
the number of objects, cavities, and holes in a 3D digital
picture.

A scanner is an &xm array of finite-state automata

g g

11 %12°°° im
921 922°°"" %2m
021 022.... Ozm

Each automaton Oij is defined by a 7-tuple <Qij'6ij'aij’aij'

Aij'sij'bij> , where Qij' the set of states, is a set of inte-
gers, and dij’ the next state function, has the following form:
aij
i3° B Qg o0 X101F > Qg
where aij is an integer, and aij:{l,...,aij} + IxI is a one-to-
one function which enumerates the next state neighborhood of

oij' xij' the output function, has the following form:
b.

A..: T Q x{0,1} -~ 1,
i3° o1 Bij(k)

where bij is an integer, and Bij:{l,...,bij} + IxI is a one-to-
one function which enumerates the output neighborhood of O5e

J
We will use Qij(t) to represent the state of oij at time t.
It is assumed that the scanned advances by one plane in each
unit of time and that it scans the first plane at time t=1.

Thus, the input to scanner element oij at time t is £(i,3j,t).




Note that Qij is not a finite set and also that the neigh-
borhood of Uij is not fixed.
The counter C monitors the output of each element of the
2 m

scanner; thus C(t)=C(t-1)+ I 2 A..(t).
i=1 §=1 %

Now, we shall describe algorithms for computing the
numbers of objects, cavities, and holes.
l: Objects

The set of states of scanner element oij is Qij={x|x is an
integer and |x|<(i+j-1) (i+j-2)/2+j}. Each automaton % starts
in state 0 and remains in that state as long as 0's are scanned.
When a voxel containing a 1 is reached, oij will assume state
(i+3j-1) (i+j-2) /2+j. As oij tracks a string of 1's, an exten-
sion of the component of S is sought, i.e., two automata which
are actively tracking 1's are tracking the same object if they
are spatially neighbors or if they are in the same state. All
automata which are tracking the same object assume the same
state (the state of the automaton having the smallest state).
An automaton which passes a lower border of an object and has
been in a state k enters the state -k for one period. The next
time it goes directly to state 0 unless a 1 is encountered. If
Oij enters the state -((i+j-1) (i+j-2)/2+j) and no others are in
the state (i+j-1) (i+j-2)/2+j), then I

J

one object has been scanned. The precise definitions of Gij

will output 1, i.e.,

and Aij are represented as follows:




i) When 6-adjacency is used for S,

Gij(Qij(t-l),f(t,i:j))

((143-1) (i+3-2)/2+3) - £(t,1,3) if Qij(t-l)

A

0

= LINK(Q:.Lj (t-1)) if Qij (t-1) > 0 A f(t,i,j) =1
—LINK(Qij(t—l)) if Qij(t-l) >0 A £(t,i,3) =0,
)
- 1]
- 1 if Qij(t) = =((i+3-1) (i+j-2)/2+j) for all x,y such that
' = - (x+y-1) (x+y-2)/2+y > (i+3-1) (i+j-2)/2+3,
;‘ 0 otherwise, Qxy (t)# —Qij (v),
5'; where
= LINK (g)
?! =1Ti2 2 {(xk+yk—l)(xk+yk-2)/2+yk | (3xl)...(3xk_l)(3y1)...(3yk_l)(Qx y (t-1)
2kEn 1°1
- g) A(¥5) (2535k)
o .
?I ((Qx.y.(t l),O)A((xj,yj) and (xj—l'yj-l) are 6 ad]acent)v(Qx'y'
_ 3% 3%
s
. - (t-1)=Q (t-1))))) 3.
- ¥5-1¥5-1

1Irh

ii) When 26-~adjacency is used for 8§,

- sij(Qij(t-l),f(t,i,j))
- 0 if Qij(t-—l) = 0 A £(t,1,3) =(T
éi LINK((i+3-1) (i+3-2)/2+3) if £(t,i,3) =1
' ~LINK ((i+3-1) (i+3j=-2)/2+3) if Q;5(t=1) > 0 A £(t,i,3) =0
Aij is the same as in the case (1),
where
LINK (g)




e

' 2 {(xk+yk-l)(xk+yk-2)/2+yk | (3xl)...(3xk_l)(Hyl)...(3yk_l)((xl+yl-1)

-(xl+y1-2)/2+yl

=g) A(V])) (25j=k) ((Q (t-1)>0)A((x.,y;) and (x. .,y._,) are
XY 5 i i j=1""3-1

j
26-adjacent) Vv (Q (t-1)=Q (t-1))))) 1}.
*3¥3 ¥5-1¥3-1

2: Cavities

Since all components of S except the background component ar
cavities of S, the algorithm for counting objects of S can be
used for counting cavities of S by interchanging the roles of 1
and 0. In this case, the initial value of the counter C must be

to remove the background component from the set of cavities of S.

3: Genus
For any S, every 2x2x2 local pattern in Fig. 1 is easily
counted by our computational model. Thus the algorithm computing

the genus of S is easily defined.

4: Holes
Finally from algorithms 1-3, we can construct the algorithm

for counting the number of holes in S, since H(S)=0(S)+C(S)-G(S).

e = P P S PO Y G I .
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3. Unacceptability of the connectedness of a 3D picture by a

deterministic one-way PSA

In Section 2, we have given algorithms which for every 3D
digital picture count the number of objects, cavities, and holes.

However, as noted in Section 2 the 043 used in the algorithms

3
needs a set of states which is not finite. Further, its neighbor-
hood is not fixed. 1In language theory, finiteness is required in
the automaton used. From the point of view of language theory,

we prove here the unacceptability of the connectedness of 3D
pictures by deterministic one-way parallel/sequential acceptors.
Parallel/sequential acceptors of 2D pictures are well-known (e;g.,
see [7]). It is also known that a deterministic one-way non-
writing parallel/sequential acceptor can determine whether or not
the set of x's in a rectangular array I of x's and y's is connected.
In contrast with this result, our new theorem for 3D seems toc be
interesting.

A parallel/sequential acceptor of 3D pictures (for brevity:
3DPSA) is analogous to that of 2D pictures. It is defined as
follows: A parallel/sequential acceptor is a 9-tuple A=(Q,q0,QA,
#,V,#t,#b,é,u), where

Q is a finite nonempty set of states

dg € Q is the initial state

QA C Q is the set of accepting states,

# € Q0 is the blank symbol,

V is a finite nonempty set of symbols called the tape vocabulary,

# and #b are blank symbols in V,

t




ngV - ZQXV is the state transition function and
{"11011}

8:
pe Qxv + 2 is the move function.
The operation of A on a 3D array I can be described as follows:

A consists of a 2D array of cells

cll LI I clm
Czl ¢ oo czm
csl LI ] czm

whose lengths are the numbers of columns and rows of I, respective-

that are regarded

its bottom array.

cell in the state

€i-1,5" i-1,j+1'

that (q',v')es(q;,dyre--s9g)-

ly, together with special "cells"
o0 So1 °°° €0 m+l
€10 €1 m+1
€20 €2 m+1
€20 Cam+l
€241 0 e Co+1 m+l

as permanently in the # symbol. I has a row

of #t's just above its top array and a row of #b's just below

Initially, A is on the top array of I with every

qq- At any given step, each cell C4 4 reads the

J

symbol v in its position, senses the states dys95r-++499 of ci—l’j—l'

€i,9-1" Si,3" %i,5+1" Ci+1,5-1" Ci+1,j° Ci+l, 417

and can go into any new state q' and write any new symbol v' such

The move function depends only on
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the (new) state and symbol read by the distinguished cell €11°
0¢p means that A can stay where it 1s; 1l€u means that A can move
down, -1l€u means it can move up.

It is required that u(q,#t)=l and u(q,#b)=-d.for all gq. It
is understood that #t and #b can never be rewritten. If c,, ever
enters a state in QA, we say that A has accepted I. |

If a PSA does not move up, A is called one-way.

Now, we prove the following theorems. Let C be the set of

3D arrays consisting of 0's and 1's in which the 1's are connected.

Theorem 2.1 C is accepted by a nondeterministic one-way 3DPSA.

Proof: Let us consider isometric 3D array grammars, which are
three-dimenisonal analogs of those in the 2D case (see [7]).
Notice that C is generated by an isometric 3D monotonic array gram-
mar G. Here, we can assume that the starting symbol p of G appears
only once during the applications of rewriting rules.
Now, let A be a nondeterministic one-way 3DPSA working as
follows:
l) When Oij reads a symbol, the state changes into one corres-
ponding to a non-terminal symbol of G. This change is done
nondeterministically.

2) Illegal guessing in 1) causes I to go into a dead state.

J

3) When 0;4 goes into the state corresponding to the starting

3
symbol p, this state moves to Oy1° In this case, A never
goes downward until this move is completed.

4) For two states o, 0,1 9goes into the dead state.




5) When A reaches the bottom plane and finishes its transitions,

0y, goes into the accepting state if it has memorized the
only p.

From the above construction, we have the theorem. |

Theorem 2.2 C is not accepted by any deterministic one-way

3DPSA.
Proof: Let us consider a square array of side length 42 as shown
in Fig. 2. The left and right halves are called the L-part and
R-part, respectively. Cells of both parts are occupied by 0's
and 1's as shown in Fig. 3. That is, every even row and every
even column are occupied by 1's, and all other cells by 0. This
array is put in some plane of I. 1In the arrays other than this
plane, the l-cells are connected as shown in Fig. 4. Here, n;
is the name of a cell in the L-part and mj is the name of a cell in
the R-part. Thus, the cells n, and n,

i+l
are connected in the cells between the top array and pth array,

in the same parentheses

and the same for the mj and mj+l cells.

Further, the line indicated in Fig. 4 shows that the n, and
mj cells are connected in the cells under the pth array. This con-
nection is always possible by considering a very large p and suff-
ciently high L.

Now, the number of configurations of states of A at the time

it leaves the pth array is ]Q|4lx4k. Also, the number of connec-

tions of cells in the L-part (that is, the number of parenthesized
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C x C x 2
1-cells) is 2¢% 2 2¢2-2 2 ...2% = 2£L | But we have
2
1622 24 2
o] < = for sufficiently large %. Hence, there are at
L
2

least two different parenthesizings which yield the same con-
figquration of states of A at the time it leaves the pth array.
Let these two be as follows:

. e (nl.nz) (n3,n4) e

e (ml,mz) (m3,m4) .o
and

oo (nl,n3) ( ) ...

e (ml,mz) (m3,m4) e

Let Fig. 5 and Fig. 6 represent these two 3D arrays, where the
connection relations are in the cells between the (p+l)st and bot-
tom arrays. The lines in Fig. 5 show that all l-cells are con-
nected. This is possible by considering a suitable connection
level.

Suppose that a deterministic one-way 3DPSA A accepts the
connected 3D arrays. Then A accepts the connected 3D array shown
in Fig. 5. But then, A must also accept the non-connected 3D
array shown in Fig. 6, since it gives rise to the same configura-
tion of states of A at the time it leaves the pth array. This

is a contradiction. Therefore, we have the theorem. //
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4. Acceptability of the connectedness of 3D pictures by a multi-

pass one-way PSA

In the previous section, we showed that any deterministic
one-way PSA cannot accept the connectedness of 3D pictures. Here,
we modify the one-way PSA so it can make repeated passes over a
given 3D picture. That is, the new acceptor A acts as follows:

1) First, A works as the usual one-way PSA. This is the first
pass.

2) When A reaches the array below the bottom, A begins to work
again from the top array. This is the second pass.

3) A repeats the behavior 2).

4) If c ever enters a state in Qa during the repeated behavior

11
of 3), we say that A accepts I.
For this multi-pass 3DPSA, we have the following theorem:

Theorem 3.1 A multi-pass deterministic one-way 3DPSA can accept

the connectedness of 3D pictures.

Proof: Let u(t)=1 if t-0, u(t)=0 if t=0. We consider 3D pictures
consisting of 0's and 1's. In Fig. 7 a,b,c,d,e,f,g,h are the
voxels belonging to a 2x2x2 window.

Then F(b), the transformed value of b, will depend on the
values of the elements belonging to the three planes that meet at
B.

For 6-connectivity, we define

F(b)=u(u(a+b-1)+u(b+c-1)+u(a+d+c-2))+u(f+b-1)+u(c+tg+f-2)+
u(a+e+f-2)).

Similarly, for 26-connectivity, we define

F(b)=u(u(a+b+g-1)+u(b+c+e-1;+u(b+f+d-1)+u(atc+f-1)+

u(b+h-1)).
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Then the following theorem is well-known [9]: When F is applied
repeatedly in parallel, a single object shrinks down to a single
1-voxel in a finite number of steps.

By making use of this result, we can prove the theorem.

This is done as follows:

In the first pass of a multi-pass deterministic one-way PSA A,
the values of a,c,d,e,f,g,h, are written at b as the output of
A. This is done for all voxels.

In the second pass, A writes the result obtained by the
first application of the function F to . Generally, in the
(n+l)st pass A writes the result obtained by the nth application
of F to L.

When A recognizes a single l-voxel, ©1 enters the accepting
state. Therefore, we have the theorem. //

By a similar technique, A can accept I such that it has a
cavity. Furthermore, by making use of a counter (bounded to the
number of voxels in I) a multi-pass deterministic one-way PSA
A can count the number of objects and cavities in L. Thus, we
know from the equation given earlier that a multi-pass determini-

stic one-way PSA can count the number of holes in I.

.............
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